Section 2: General Engineering
Engineering Materials: Structure and properties correlation;engineering materials (metals, ceramics, polymers and composites) – properties and applications; stress- strain behavior of metals and alloys;iron-carbon phase diagram, heat treatment of metals and alloys, its influence on mechanical properties.
Applied Mechanics: Engineering mechanics – equivalent force systems, free body concepts, equations of equilibrium; trusses; strength of materials – stress, strain and their relationship; failure theories, Mohr’s circle(stress), deflection of beams, bending and shear stress, Euler’s theory of columns.
Theory of Machines and Design: Analysis of planar mechanisms, cams and followers; governors and fly wheels;
Design: design of bolted, riveted and welded joints; interference/shrink fit joints; design of shafts, keys, spur gears, belt drives, brakes and clutches; pressure vessels.
Thermal and Fluids Engineering: Fluid mechanics – fluid statics, Bernoulli’s equation, flow through pipes, equations of continuity and momentum, capillary action, contact angle and wetting;
Thermodynamics – zeroth, first and second law of thermodynamics, thermodynamic system and processes, calculation of work and heat for systems and control volumes; air standard cycles; heat transfer – basic applications of conduction, convection and radiation.
Engineering Materials: Structure and properties correlation;engineering materials (metals, ceramics, polymers and composites) – properties and applications; stress- strain behavior of metals and alloys;iron-carbon phase diagram, heat treatment of metals and alloys, its influence on mechanical properties.
Applied Mechanics: Engineering mechanics – equivalent force systems, free body concepts, equations of equilibrium; trusses; strength of materials – stress, strain and their relationship; failure theories, Mohr’s circle(stress), deflection of beams, bending and shear stress, Euler’s theory of columns.
Theory of Machines and Design: Analysis of planar mechanisms, cams and followers; governors and fly wheels;
Design: design of bolted, riveted and welded joints; interference/shrink fit joints; design of shafts, keys, spur gears, belt drives, brakes and clutches; pressure vessels.
Thermal and Fluids Engineering: Fluid mechanics – fluid statics, Bernoulli’s equation, flow through pipes, equations of continuity and momentum, capillary action, contact angle and wetting;
Thermodynamics – zeroth, first and second law of thermodynamics, thermodynamic system and processes, calculation of work and heat for systems and control volumes; air standard cycles; heat transfer – basic applications of conduction, convection and radiation.
No comments:
Post a Comment